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NUMBER 2 (WINTER 2012)

Charles Catania (1981) makes the valid 
point that excessive focus on the creation of 
mathematical models in behavior analysis can 
crowd out experimental analysis. This point 
can, perhaps, be elaborated by considering 
how the utility of quantitative formulations 
depends on how they are used. 

In the physical sciences, the laws of ther-
modynamics, the laws of motion, and the gas 
laws state simple relationships among 3–5 
variables to which numbers can be assigned. 
The fact that such equations form the basis of 
modern technology may have inspired many 
of the mathematical modeling efforts in the 
behavioral sciences. 

But the type of modeling used in physics 
is not applicable in the behavioral sciences. 
Constructs like drive, habit strength, re-
sponse strength, reflex reserve, reinforce-
ment magnitude or probability, behavioral 
momentum, and so forth (e.g., Bush & 
Mosteller, 1955) do not behave and are not 
measurable the way temperature, force, mass, 
distance, or pressure are. Long before we 
reach the mind-boggling non-linearities and 
interactions of such behavioral constructs, 
we face the problem that their operational 
definitions are necessarily arbitrary and non-
unique. Drive, for instance, can refer to hours 
of deprivation of food, water, oxygen, or sex, 
or to blood sugar level or hydration level.  
The definitional problem is even greater for 

the concepts of reinforcement and response 
(Mechner, 1992). The wide range of pos-
sible definitions of the variables used in 
mathematical models of behavior limits the 
models’ usefulness for prediction and control 
in situations beyond the particular ones to 
which they are fitted.  

The underlying reason why mathematical 
models cannot be used in the behavioral sci-
ences in the way they are used in the physical 
sciences is that organisms are responsive to 
myriad variables, both internal and external. 
This responsiveness—a product of evolu-
tion—gives organisms the ability to adapt 
and survive in complex and fast-changing 
circumstances. It is the reason why 2–4 “free 
parameters” (generally used as coefficients 
and/or exponents), are commonly required 
to fit a particular mathematical model of 
behavior to a particular set of data (Mazur, 
2006). Free parameters, used in this way, 
are plug factors that correct for the action of 
any number of unknown variables, including 
the organism’s current physiological state, 
learning history, adaptations, species, age, 
prevailing environmental contingencies, and 
physical variables in the prevailing environ-
ment.  A wide range of equations can be 
fitted to a wide range of data by using 2–4 
free parameters. Such free parameters don’t 
correspond to independently defined and 
measurable entities (if they did they would no 
longer be “free”)—they only reflect the joint 
action of the innumerable variables to which 
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organisms are responsive and the particular 
ways in which the equations’ main variables 
are defined. 

James Mazur, in his article Mathematical 
Models and the Experimental Analysis of Be-
havior (2006), cites some elegant examples 
of this mathematical modeling in behavior 
analysis—studies of the initial-link effect, 
comparisons of quantitative implications 
of two theories of punishment, and of two 
alternative mathematical formulations of 
temporal discounting—hyperbolic versus 
exponential decay. He also discusses how 
Killeen’s compelling MPR model can be 
fitted to a wide range of behavioral data by 
varying a small number of parameters. 

While all of this work is impressive within 
its circumscribed domain, it would seem 
that any equation that requires 2–4 free 
parameters to fit a particular set of data is 
tantamount to a qualitative statement. For 
instance, the mathematical formulation of 
the matching law doesn’t seem to add sig-
nificant information to the qualitative state-
ment that there is a general proportionality 
between most response strength measures 
and most measures of reinforcement rate or 
probability. Mazur quotes Herrnstein himself 
as having said, “If the matching law accounts 
for 90% of the variance, that’s good enough 
for me.” Similarly, it seems to me that the 
mathematical statement that temporal dis-
counting functions are hyperbolic doesn’t 
add significant information to the qualitative 
statement that reinforcing value tends to be 
inversely related to delay. Neither mathemati-
cal formulation enables us to make numerical 
predictions as to the behavior that will occur 
in any particular set of circumstances without 
assigning, to the free parameters, numerical 
values specific to those particular circum-
stances and to the particular definitions used 
for the formulation’s main variables. In eco-
nomics, too, the insights that mathematical 
formulations have provided have been mainly 
qualitative, for the same kinds of reasons. 
But the fact that mathematical formulations 
in behavioral science have limited generality 

does not mean that they have no value. It just 
means that the information they provide is 
qualitative.  

Catania’s point is that excessive focus 
on mathematical modeling can deflect 
effort from the laboratory research work 
needed to gain a greater understanding 
of organisms’ relationship to the count-
less as-yet-undiscovered variables to which 
they are responsive. I would add that the 
“free parameter” adjustment approach can 
also deflect effort from the development of 
new conceptualizations of a model’s basic 
variables like response and reinforcement. 
Let me illustrate with a concrete example. 
Many efforts to fit Herrnstein’s matching 
law to data have run into deviations from 
theory described as “undermatching.” “over-
matching,” and “bias.” Baum’s “generalized 
matching law” (Baum, 1974) seeks to correct 
for these deviations by the use of two free 
parameters. An alternative, more experimen-
tally oriented approach to correcting these 
deviations would be to focus on the defini-
tion of the behavior variable—for instance, 
to consider features of the individual operant 
response unit. Examples of such features are 
response duration, required response effort, 
interresponse times that exclude response 
duration, or response clusters that come to 
function as larger units, as happens in some 
ratio-like schedules (Mechner 1992, pp. 24-
27). That is just one example of the search 
for alternative conceptualizations of a basic 
variable. Others are (a) Davison’s and Baum’s 
recent work on the nature of reinforcement 
(2003); (b) the experimentally testable pro-
posal that reinforcer presentations operate 
on changes of certain response parameters 
rather than on the absolute values of those 
parameters (Mechner 1992, pp. 37–46); 
and (c) equivalence research that examines 
the processes involved in concept formation 
(Sidman, 1994; Fields et al., 2012).   

When Catania implies that the overarch-
ing task of behavior analysis is to conduct 
the experimental work required to broaden 
our understanding of operative variables 

Francis Mechner



229

and their interactions, he raises the ques-
tion of whether some research strategies are 
more likely than others to lead to advances. 
I would suggest that particularly promising 
experimental research and mathematical 
modeling endeavors have been ones that 
bring behavior analysis into contact with 
other behavioral/biological disciplines, like 
physiology or chemistry. Killeen put it suc-
cinctly—models are useful when they have 
“reference to systems that exist in a different 
domain than the thing studied.” 

One familiar example is human dark 
adaptation, where two decay functions de-
scribe the recovery of retinal rods and cones 
from the bleached state. The first segment 
corresponds to the recovery of cones and 
the second to the recovery of rods. Details 
of the mathematical functions’ shapes have 
been able to provide information about 
the contribution of variables other than 
the purely chemical ones (Lamb & Pugh, 
2004). A second example is Killeen’s recent 
work on ADHD, in which he relates math-
ematical formulations of such behavioral 
data as the mean and SD of response-time, 
and attentional inertia, to such physiologi-
cal phenomena as the reuptake of various 
neurotransmitters, neural energetics, and 
the size and number of astrocytes (Killeen 
et al., 2012). Mazur also cites studies in 
which mathematical models of temporal 
discounting  were used to assess effects of 
brain lesions on temporal discounting in rats, 
and an application of the matching law to 
examine the relationship between the neural 
control of monkeys’ saccadic eye movements 
and the probability that eye movements 
would be followed by a fruit juice delivery. 
A particularly prominent example of domain 
bridging is Eric Kandel’s elucidation of the 
neural mechanisms of learning and memory 
(Kandel, 2006).  

It should be noted that quantitative 
approaches to discipline bridging need 
not be limited to mathematical models.  
For example, behavioral contingencies pro-
vide conceptual bridges between behavior 

analysis and other behavior-based disci-
plines. Codification and modeling of these 
bridges requires the use of a formal symbolic 
language (Mechner, 2011). Examples are 
bridges to economics (Mechner, 2010), 
and to locomotion, reading and listening 
(Mechner, 2009).

In summary, Catania correctly points 
out that mathematical modeling activity can 
deflect research effort from laboratory work. 
However, we have also seen that quantita-
tive formulations can be used to identify 
research questions raised by new conceptu-
alizations, and serve as a tool for bringing 
experimental studies into fruitful contact 
with other disciplines, thereby contributing 
to conceptualizations that extend the reach 
of behavior analysis. 
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